
CVS $Revision: 1.11 $Date: 2003/11/03 23:37:07

Physics Simulation Design

G. Bernstein, with Kim/Kushner/Kuznetsova/Gladney/Tucker/Lamoreaux

1. Purpose of the Document

This document will eventually specify all the classes (i.e. Nouns and Verbs) that are needed
to implement the desired SNAP simulations. Initially the development will focus on the SNIa
investigations, but the class structure will be designed to accomodate future weak lensing and
other use cases.

The prerequisites are: the Simulation Architecture document (GK), which specifies the sys-
tem protocols for SNAPSim; and the data flow diagrams (AK) that outline the primary uses for
SNAPSim. The old “block diagram”(GB) might closely resemble what is produced here.

In these drafts, ??? mark places that are in need of further work or the opinions of the design
group. Objectst that will correspond to a Java class are written in teletype font.

2. Domains

It will be useful to divide the physics simulation into different domains. These domains do
not (yet) correspond to any formal programming structure; they are meant as a way of organizing
the problem into nearly separable concepts/tasks, hence will also help in dividing the labor of
design/implementation. The guidelines for the definition of domains are:

1. Nouns, or data structures in general, will belong to only one domain. The exceptions are
mathematical utility classes.

2. Verbs, or algorithms in general, will sometimes cross domains, e.g. by producing Nouns in a
new domain from data in previous domains, but the number of involved domains will be kept
to a minimum.

3. The branch points for simulations or use cases will tend to be after the completion of a domain.
For example, when testing the effect of an instrument specification change, the Universe and
Mission domains will be held fixed while we loop over changes to Observatory domain. Tests
of different analysis algorithms will start with common SourceData and loop over various
Analysis cases.

Following sections define the domains. The data members within each domain are listed in
later sections.

– 2 –

Utility: Mathematical/physical classes that are used throughout many domains, such as WavelengthFunction,
SphericalCoordinate or PSF.

Universe: everything that happens before the photons hit the telescope or the top of the at-
mosphere, including AstronomicalSources, their distributions in the sky, and intervening
effects such as dust and lensing.

Observatory: description of the hardware that converts photons to image data, from the top of
the atmosphere to the detector output.

Mission: List of the pointings, times, and configuration of the observatory during exposures, and
the algorithm for determining this schedule.

PixelData: the simulated (or real) bits that flow from the spacecraft, along with pixel-level
calibrations such as bias and flat-field.

SourceData: the quantities of interest for sources that are measured directly from the images.
For points sources, there is PointSourceDatum that specifies the position, flux, and un-
certainties in these quantities in a single exposure. Spectra and light curves are arrays of
PointSourceDatum objects. For extended sources, there are additional observables related to
shape. There should be no cross-correlation of random errors between different SourceData
members, as these are the most basic observable quantities of the objects.1 SourceData will
be in nominally calibrated physical units, discussed further in §10.

Calibration: classes that embody the model used to convert the nominal fluxes in the SourceData
into absolute normalizations of the spectra of sources with some assumed spectrum. A simple
case is to assign a single photometric zeropoint to each Channel (cf. §7), but more complex
models involve color terms, etc. In other words the Calibration domain takes SourceData for
a chosen source and produces an estimate of its absolute flux normalization. There will also
astrometric Calibration classes.

Analysis: results of subsequent processing of calibrated SourceData, for instance light curve or
spectral parametric fits, fitted supernova models, cosmology fits, lensing maps, etc. Will
usually consist of probability distributions over some space of derived quantities, i.e. fitted
model parameters.

These domains are ordered, in that creation of a Noun in one domain should require only
information from previous domains. The primary exception that I can think of is that the Mission
scheduling algorithm will end up being forward-looking once we are using partially-analyzed SN data
as a spectroscopy trigger (or any other adaptive scheduling technique). Another small ”backflow”
of information is that when we realize a Universe, we don’t want to do the entire sky, just the parts

1In fact there might be cross-correlations between properties of objects that overlap on the sky.

– 3 –

that are likely to be observed by a given Mission. So some Mission information must be provided
to build the Universe.

3. General Considerations

There are a few design considerations that are applicable to many or all of the domains.

3.1. Truth, Realization, and Model

A full simulation needs to contain multiple code objects to represent the same physical object.
There is typically some truth version of the object, representing the behavior that is assumed in
constructing the artificial measurements. Then there is a model version of the object, which is the
best estimate of the object’s behavior resulting from analysis of the measurements.

Likewise for measurements, there is typically a true value of the expected number of counts
(or flux, or position, etc.) and an expected variance—or, more generally, a probability distribution
of the measurement. Then there is a realization of the measurement, which is a single value drawn
from the probability distribution. Equivalently this is the best estimate of the true value of the
flux, given the measurement. There is usually an estimate of the variance, which differs from the
true variance.

A general goal of our simulation should be that truth and model of an object, or truth
and realization of a measurement, should be embodied by code that is as similar
as possible, preferably by the same code. The interface for SupernovaIa, or in fact any
AstronomicalSource or effect, should be capable of serving the needs of data simulation (truth) as
well as data analysis (model). In a given simulation run, we might analyse the data with a different
implementation (i.e. model) of SupernovaIa for analysis than we used for simulation. But each
implementation should be capable of doing either job.

This is important for several reasons:

• In general, a given bit of information, such as a source model, should be coded only once, in
order to avoid having two versions that can get out of sync during code development.

• The analysis code development always includes a test that it can properly recover the truth
parameters. This is facilitated by having the exact truth model be used by the analysis.

• We want to smooth the transition from simulation pipeline to reduction pipeline; in the latter,
there is no known truth.

• Both the simulation and the analysis are essentially the process of modelling the observations—
one produces observations from source info, the other vice-versa—so they logically should

– 4 –

share the same code.

Perhaps the only significant consequence of this guideline is that models should be capable of
providing the derivatives of observables with respect to model parameters. Such derivatives greatly
speed the analysis phase.

Another guideline in this area is that truth and model (or truth and realization) should
be stored in distinct instances of the model class. Any correspondence between truth and
model instances should be recorded in an external catalog class, not within either the truth or the
model class. There will be many simulation runs in which there is, for example, truth data but
no realization (e.g. in a Fisher analysis), and many pixel-based simulation runs in which there are
model objects that have no corresponding truth (e.g. false positives or a blind analysis). Of course
the latter is true for the real data as well!

3.2. Fundamental Operations

A SNAPSim task typically involves four general phases:

1. Specify the Universe being observed, the Observatory being used, and the Mission strategy,
then realize each of these.

2. Determine which targets of interest were observed at what times with what hardware channels.

3. Realize the SourceData for the each observation of each target (with or without realizing
PixelData).

4. Analyze (and perhaps calibrate) the SourceData to obtain final quantities of interest, typically
the uncertainty on dark energy parameters.

A goal of this design is to make each of the first three processes as generic as possible, in the
sense that our data structures can flexibly handle different kinds of observatories, astronomical
objects, spectral vs imaging data, etc., without having to recode the Verbs that do these steps.
This means using polymorphism and interfaces wisely.

The following subsections list some operations that seem very basic to the simulation process,
so many of the interfaces will be designed to work smoothly with these Verbs/facilities. ??? Are
these going to be verbs?

3.2.1. Astrometric Calculator

In Step 2, it is necessary to determine which sources are projected within the borders of
a given detector in the focal plane. This requires some efficient means of calculating the sky-

– 5 –

coordinate boundaries of the detector given the optical distortions, the pointing and orientation
of the telescope, and distortions induced by atmospheric and gravitational lensing. We need to
develop an Astrometric Calculator which can implement these calculations efficiently for a wide
variety of distortion effects that are distributed between the Universe, Observatory, and Mission
domains. The Astrometric Calculator will be embodied by the coordinate and distortion mapping
classes of §coordinates.

3.2.2. Exposure Time Calculator

Step 3, realization of SourceData, is a fundamental operation, and is essentially the job of
the Exposure Time Calculator (ETC) when we are not simulating PixelData. For Fisher analyses,
we will ask the ETC only to calculate the variance of the measurement, and we do not need the
realization itself. The ETC is another facility that needs to be efficient and flexible.

The ETC, to realize a point-source measurement, needs to know from different domains:

• From the Mission:

– exposure time

– exposure repetition pattern (dithering, etc)

• From the Observatory:

– pixel pitch and plate scale

– detector noise model

– cosmic ray model

• From combination of Universe and Observatory:

– target count rate (integrated over band)

– background count rate (integrated over band)

– ePSF (effective PSF, includes all optical & detector contributions)

For extended-source analysis such as galaxy photometry or shape analysis, also needs to know a
galaxy Shape, from the Universe domain.

So these are all quantities that we should be prepared to derive for any type of astronomical
target and any type of observatory setup. The Observation class will hold all this information
(§5).

– 6 –

3.2.3. Image Simulator

The exact same information that the ETC needs is also required to create pixel-level sim-
ulations. A fast and flexible “draw” routine will be needed, which can execute distortions and
convolutions of the intrinisic source shapes.

3.2.4. Model Fitting

Most Analysis activities, and many Calibration activities, will involve fitting a parametric
model of the sources, dust, cosmology, and instrument calibration to a series of SourceData or
higher-level data. ??? We need to work out a syntax for flexibly specifying parameter sets that
consist of elements of various Nouns, for specifying figure-of-merit functions for optimizing, and for
holding covariance matrices or likelihood functions of resultant fits.

4. Utility Classes

4.1. Spectral Information

We will be awash in functions of wavelength: source spectra, extinctions, background bright-
nesses, QE’s, etc., that have to be multiplied and integrated. A uniform interface is needed:

interface WavelengthFunction {

double valueAt(double lambda);

void validity(double& lambdaMin, double& lambdaMax);

void support(double& lambdaMin, double& lambdaMax);

SpectralUnits units();

double resolution();

??? preferredValues();

}

Each implementation embodies some function f(λ), which is defined in the region of validity

[λmin, λmax]. Requesting the valueAt a λ 6∈ [λmin, λmax] will throw an exception. ??? define
exception class.

f(λ) is gauranteed to be zero outside the interval of support. Filter functions will have the
support region contained within the definition region, but source spectra may be non-zero outside
the bounds of their definition.

The resolution and preferredValues are hints to the SpectrumIntegrator: the former
suggests the largest allowable lnλ step that will capture the variation of the function, and the
latter may contain information about the nature of a tabulated function.

– 7 –

4.1.1. Units

The functions carry a tag to indicate their units. This is a Noun that we design and serves as
a type-safety mechanism, for instance insuring that a QE is not used where a source spectrum is
required.

class SpectralUnits extends Noun {

private:

???

public:

bool equals(SpectralUnits rhs) const;

SpectralUnits times(SpectralUnits rhs) const;

static final SpectralUnits Luminosity;

static final SpectralUnits Flux;

static final SpectralUnits Area;

static final SpectralUnits SolidAngle;

static final SpectralUnits SurfaceBrightness;

static final SpectralUnits TransferFunction;

static final SpectralUnits Rate;

}

The units of these quantities should be standardized throughout the simulation. The most robust
units for luminosities are photons per ln(wavelength) per second—luminosities expressed this way
are independent of energy or wavelength units; the value is the same as per ln(frequency); evolve
only as (1 + z) under cosmological redshift because the photon count and logarithmic intervals are
invariants; and convert naturally to electrons in the detectors. If we adopt µm as the wavelength
unit, m2 as the collecting-area unit, and sr as the solid-angle unit, then the SpectralUnits con-
stants are then as given in Table 1. The TransferFunction units are appropriate for extinction,
atmospheric/atmospheric/filter transmission curves, and QE curves.

??? Do we want to distinguish “specific” quantities (per log wavelength) from the integrated
quantities?

4.1.2. Implementations of SpectralFunction

We will have numerous implementation of the SpectralFunction interface. These will cer-
tainly include

class ScalarSpectralFunction extends Noun implements SpectralFunction;

class TabularSpectralFunction extends Noun implements SpectralFunction;

– 8 –

class BoxcarSpectralFunction extends Noun implements SpectralFunction;

class ProductSpectralFunction extends Noun implements SpectralFunction {

private:

NounArray factors;

public:

????

}

The ProductSpectralFunction is defined to be the product of all its factors, each of which is a
SpectralFunction. For the ProductSpectralFunction, the support and validity ranges are
the intersections of all its factors’. The resolution is the minimum of its factors’. The factors

array will hold ??? links to the component functions. There will be methods for adding factors,
etc.

4.1.3. The Integrator

A final class in this set is the utility to integrate a SpectralFunction. This can be a Verb
???.

class SpectrumIntegrator implements Verb {

<required Verb stuff...>

double integrate(SpectralFunction f, SpectralUnits units);

}

The SpectrumIntegrator returns ∫ λmax

λmin

f(λ) d lnλ (1)

with the integral over the support of the SpectralFunction f . An exception is thrown if the
validity does not span the support. The units of the integral quantity are output. They will
tend to be SpectralUnits::Rate.

The SpectrumIntegrator should be intelligent enough to use f.resolution() and to extract
the scalar quantities from a ProductSpectralFunction before integration.

It will be desirable to have SpectrumIntegrator cache the results of its integrations, because
the same ones will likely be repeated many times, e.g. the flux of a supernova at peak integrated
over the B band.

– 9 –

4.2. Astrometric Coordinates and Maps

Positions on the sky will need to be specified by an abstract class

class SphericalCoordinates extends Noun {

private:

double x,y,z; //Three direction cosines

abstract void convertToICRS(double x, double y, double z);

abstract void convertFromICRS(double x, double y, double z);

public:

????

}

Derived classes are then constructed for each specific coordinate system:

class SphericalCoordinatesICRS extends SphericalCoordinates;

class SphericalCoordinatesEcliptic extends SphericalCoordinates;

class SphericalCoordinatesGalactic extends SphericalCoordinates;

class TangentPlaneCoordinates extends SphericalCoordinates;

The last of these specifies spherical coordinates as a tangent-plane projection about a chosen axis
on the sky. It requires a class

class Orientation extends Noun {

SphericalCoordinates axis;

double positionAngle;

}

We will also eventually require a class to specify locations in 3d space:

class CartesianCoordinates extends Noun;

class CartesianICRS extends CartesianCoordinates;

class CartesianIGRS extends CartesianCoordinates;

The first derived class gives coordinates relative to the Solar System barycenter, in the ICRS
orientation frame. The second gives coordinates relative to the geocenter in coordinates affixed to
rotating Earth. They are needed for keeping track of the observatory location, essential for such
tasks as planetary ephemerides, parallax calculations, and observing circumstances.

Coordinate mappings will arise in both the Universe and the Observatory domains, and will be
modelled or used in the Calibration and Analysis domains. There will be a coordinate-transform
class:

– 10 –

interface Distortion {

void forward(SphericalCoordinates xyTrue, SphericalCoordinates& xyObs)

void inverse(SphericalCoordinates xyObs, SphericalCoordinates& xyTrue)

Matrix magnification(SphericalCoordinates xyObs);

double fluxMagnification(SphericalCoordinates xyObs);

}

The magnification() method gives the local magnification matrix, i.e. the linear expansion of
the distortion map about a given line of sight, and fluxMagnification returns the Jacobian of
this map.

The implementations of Distortion will include some gravitational lensing cases [??? lensing
distortion depends upon the redshifts of the source and lens; we need some way to incorporate
this] from the Universe; a map of the optical distortions of the telescope about the optic axis; and
perhaps additional classes

class StellarAberration extends Noun implements Distortion {

private:

CartesianCoordinates velocity

...

}

class AtmosphericRefraction extends Noun implements Distortion {

}

There is an implementation that is the composition of several Distortions:

class DistortionProduct extends Noun implements Distortion;

unlike PSF and SpectralFunction compositions, the order of Distortions is significant.

??? The domain of Distortion functions needs a little work. For a given Observatory Channel

we will want a Distortion that is actually a map from pixel coordinates on the focal plane (in
µm probably) into a TangentPlaneCoordinate which is in radians but is relative to the optic axis.
The Orientation of the optic axis then turns this into a map into SphericalCoordinatesICRS.

A region on the sky can be described through this interface:

interface SolidAngle {

bool includes(SphericalCoordinates point); //true if region includes the point

bool overlaps(SolidAngle rhs); //true if region touches another region

bool includes(SolidAngle rhs); //true if region includes another region

double area(); // returns steradians enclosed

}

– 11 –

Instead of being an interface with implementations of many kinds of regions, we might just restrict
ourselves to polygonal regions. Otherwise the coding of overlaps and includes could be messy.

4.3. Time

A class for a UT date and time:

class UT extends Noun {

double interval(UT rhs); //time interval (s) between this and rhs

bool precedes(UT rhs);

UT plus(double seconds);

}

4.4. Point Spread Functions

The blurring of the astronomical image before and during detection is described by a point
spread function (PSF):

interface PSF {

complex kValue(double kx, double ky);

complex xValue(double x, double y);

double maxK(); //largest significant k-vector

double stepK(); //suggested k-space resolution

bool isAxisymmetric();

// Other calls that specify the spatial extent, k-space extent,

// and various moments.

}

We can expect to require several implementations

class PSFGaussian extends PSF;

class PSFAiry extends PSF;

class PSFKolmogorov extends PSF;

class PSFBox extends PSF;

class PSFTabularK extends PSF;

class PSFProduct extends PSF;

}

The Gaussian is a useful analytic PSF, and accurately describes the charge diffusion contribution.
The Kolmogorov form arises from atmospheric seeing; the Box is the typical effect of pixelization;

– 12 –

PSFTabularK allows a PSF that is tabulated in k space.

The last implementation of this interface is a PSF that consists of a product of other PSFs in
a NounArray. It can propagate maxK(), stepK() and isAxisymmetric() in the expected fashion.
A clever version would be capable of recognizing efficent analytic combinations, for example all
PSFGaussian contributions can be combined into a single one.

??? The units of PSFs need to be specified. Normally the domain of a PSF measured in
arcseconds or radians. For detector effects, however, the domain is sometimes specified in microns.
Perhaps we can standardize on radians, and leave it to the Detector classes to take a plate scale and
provide a PSF that is in radian units. The output units of a PSF are usually such that the integral
over its domain is unity (value at k = 0 is unity). A pixel response function (PRF), however, is a
PSF that specifies the conversion from incident intensity (γ s−1 sr−1) to the count rate in a pixel
(γ s−1), so that its integral must have units of sr.

4.5. Parameter Sets and Model Fitting

Fitting of a model to a set of observations is going to be an oft-used process. A standardized
representation of the parameters, data, likelihood functions, and uncertainties should be imple-
mented.

The general fitting problem can be posed this way: we have a vector of observed quantities
o = {o1, o2, . . .}, and a model might predict values ô for these observables. Most generically
there is a (negative log) likelihood function L(o|ô) over these observables. In the simplest case of
independent Gaussian observables, this is the χ2 function

L =
∑

i

(oi − ôi)2

σ2
i

, (2)

where σ2
i are the variances.

A model takes a vector of parameters p and produces a resultant ô. We can thus form the
likelihood for the observations L(o|p), which is the basis for all model-fitting and analysis. For
example a Bayesian fit would amount to minimizing

L(o|p)P (p) (3)

for some prior P on the parameters. Least-squares fitting is this minimization for the case of
Gaussian likelihoods and uniform prior.

The first two classes here are p, and o or ô. They are functionally equivalent to simple arrays
(ArrayList in the framework), with the exception that the ParameterVector can indicate that
the observables are linear in some of the variables, which will speed minimization. We define these
classes as trivial extensions of the array class just so that we have some kind of type-safing for the
modelling routines.

– 13 –

class ParameterVector extends Noun {

public:

void setElement(int i, double v); //access parameter i

double getElement(int i);

bool isLinear(int i); //are observables linear in this parameter?

int size();

}

class ObservableVector extends Noun; // measurements to be fit

void setElement(int i, double v); //access parameter i

double getElement(int i);

int size();

}

Next is an interface for a likelihood function L. For fitting purposes we often need the derivative
vector ∂L/∂ôi. Fisher matrix calculations will need the second-derivative quantities ∂2L/∂ôi ∂ôj .

interface Likelihood {

double logLikelihood(ObservableVector o_meas, ObservableVector o_model);

Vector logLDerivatives(ObservableVector o_meas, ObservableVector o_model);

double secondDerivative(ObservableVector o_meas,

ObservableVector o_model,

int i, int j);

}

class GaussianLikelihood extends Noun implements Likelihood {

private:

CovarianceMatrix covariance;

}

The Gaussian case implements the usual chi-squared

L = χ2 = XT Σ−1X, (4)

X ≡ o− ô. (5)

Here Σ is a CovarianceMatrix, which represents any positive definite matrix. More precisely, we
may allow vanishing eigenvalues so we can represent degenerate parameter fits, and we can then
also use this class to represent Fisher matrices that have no information in some dimensions. There
is an interface

interface CovarianceMatrix {

double getElement(int i, int j);

– 14 –

void setElement(int i, int j, double value);

CovarianceMatrix inverse();

double xCx(Vector x);

??? diagonalize

}

The implementations would likely include diagonal, block-diagonal, sparse, and general forms, each
with its own set() methods and computationally optimized calculations.

The interface to a model that will be fit is next. In order to iterate the fit and determine
parameter uncertainties or Fisher matrices, we will need the model derivative matrix ∂ôi/∂pj .

interface Model {

ObservableVector predict(ParameterVector p);

Matrix parameterDerivatives(ParameterVector p);

}

Finally there are the classes that embody the fitting algorithms. These will conform to the style

class ModelFit implements Verb {

void fit(Model m,

ObservableVector o,

Likelihood l,

ParameterVector p,

CovarianceMatrix paramCovar);

}

This routine finds the ParameterVector p that maximizes the likelihood of the ObservableVector
o under the given model and likelihood function. The input parameters, if any, are a starting
point for the minimization. The output matrix is the covariance matrix for the fitted parameters.
Implementations of ModelFit might include Marquardt-Levenberg, downhill simplex, linear, etc.,
with varying degrees of assumptions about the nature of the models and likelihood functions. We
might have to put some flags in the interfaces about which models/likelihoods are linear, Gaussian,
etc.

A Fisher analysis derives the optimal parameter covariances by taking likelihood derivatives
about the input model (no measured data are required). The output is the Fisher matrix

Fij ≡ ∂2L/∂p̂i ∂p̂j . (6)

The class to produce this is

– 15 –

class FisherAnalysis implements Verb {

CovarianceMatrix fisherMatrix(Model m,

ParameterVector p,

Likelihood l)

}

A further required method is a partial solution:

class PartialOptimization implements Verb {

void fit(Model m,

ObservableVector o,

Likelihood l,

ParameterVector p1,

ParameterVector p2,

Vector dLdp1,

CovarianceMatrix paramCovar);

}

In this method, the parameters are divided into vectors p1 and p2. The fits finds the optimal p2

while holding p1 fixed at the input value, but on exit we need to know ∂L/∂p1 as well as the usual
second derivatives. This method would be used to fit individual supernovae while retaining the
solution’s dependence on global quantities such as calibration constants.

4.5.1. How to Use It

To fit a model, one must create an ObservableVector and a LikelihoodModel that relects
the uncertainties in the observables. Then one must create an implementation of Model that knows
how to distribute the variables in the ParameterVector to all the physics models, run the necessary
Verbs to predict the observables, and calculate derivatives w.r.t. parameters.

The initial ParameterVector guess is fed to the ModelFit Verb along with the information
on model and observables. ??? How does the Model inform the ModelFit which parameters enter
linearly into the observables? This is important for efficient fitting.

4.5.2. Special Cases

There are some special cases of Models which might be implemented. One common fitting case
is where the observables are each the values of some function over the domain Rn, and we make
a series of measurements at specified points in Rn. Examples would be the flux in a single band

– 16 –

measured at a set of times ti, or the brightness of some object sampled at a set of points (xi, yi)
on the image plane. Then we might have a Model

class ModelFunction implements Model {

private:

ArrayList samplePoints;

Function itsFunction;

public:

void addSample(double x_i);

int nSamples() {return samplePoints.size();}

...

}

Here itsFunction is some function that maps from the sample domain Rn to the observable domain
(which could also be multi-dimensional) and has a ParameterVector as well. The samplePoints

array tells where in Rn we have measured data.

5. A General Scheme for Simulation of Astronomical Observations

The process of simulating observations of astronomical objects crosses several domains: Uni-
verse, Observatory, and Mission combine to create the simulated SourceData or PixelData. In many
cases, the Analysis and Calibration routines are also simulating the observation of sources (in this
case, to best model the SourceData), and should be able to make use of the same architecture.

An observation begins with an AstronomicalSource, which is a source of photons. The
AstronomicalSource has a luminosity SpectralFunction and an intrinsic 2d Shape. The photons
then pass through any number of media which impart PropagationEffects on the beam:

Extinction The source photons can be removed from the beam by the medium. A transmission()

member function gives the SpectralFunction of the fractional transmission.

Emission A diffuse background of photons can be added in the vicinity of the beam. The
emission() method gives this background.

Distortion The photons can be deflected, remapping the position and distorting the shape of the
source.

Blur The images can be blurred by the medium. The blur() method returns a PSF that describes
this.

Not all media have all of these effects, but we can incorporate many relevant effects in this frame-
work: host dust and background light; intergalactic and Galactic dust; zodiacal light; the at-
mosphere; optical systems; and the detector itself. PropagationEffects that do not distort the

– 17 –

image, for example, can return a null on the distort() method. Finally, an observation terminates
at a Detector, which includes information on pixelization and a noise model in addition to the
other attributes of a PropagationEffect. This ordered chain of objects: AstronomicalSource,
any number of PropagationEffects, and a Detector, constitutes an Observation (with a few
additional quantities as specified below).

The division between Universe properties and Observatory properties will normally be at the
top of the atmosphere (or before entrance of the spacecraft aperture). As illustrated in Figure 1, the
class Target defines the source and the intervening media that belong the the Universe. The final el-
ement of this chain will normally be the ZodiacalDust. The difficulty here is that when the Universe
is constructing Targets, it does not know the ecliptic longitude and solar elongation at the time
of observation, so it cannot fully specify this PropagationEffect. The solution is a new class, the
PropagationFactory, which is capable of producing a PropagationEffect when, later in the simu-
lation, the circumstances of the observation are determined. In this case, the PropagationFactory
implementation is ZodiacalLight; it can produce on demand an instance of ZodiacalSightLine,
which is an implementation of PropagationEffect. In general, a PropagationFactory can pro-
duce a PropagationEffect once informed of the ObservationCircumstances.

The part of the propagation chain that belongs to the Observatory is called a Channel. The
included PropagationEffects will likely include the telescope itself, any reimaging optics or filters,
and, for ground-based observations, a PropagationFactory implementation called Atmosphere.
The Channel chain is terminated by the Detector.

The job of the Mission domain is to take the Target list from the Universe and the Channel

list for a given exposure and produce an Observation object for each Target that is within the
field of view of the Channel. Part of this task is to determine the ObservationCircumstances for
the exposure, and use them to replace any PropagationFactorys that are in the chain with the
PropagatinEffects that they produce.

There are three additional constants that are necessary to complete the specification of the
Observation. First is the angular diameter distance DA(z) to the source.2 This is obtained from
the Cosmology object given the redshift of the AstronomicalSource. DA is needed to convert
the luminosity() of the source into a flux, and to convert the domain of the source Shape from
physical units (kiloparsec) to angular units (rad or arcsec).

The other two constants reside in the Channel structure: one is the collecting area of the
telescope, which converts the incident flux into a photon rate. The second is the focal length onto
the detector, which converts all the angular units of Distortion and Shape to/from the physical
dimensions of the Detector.

The structure of an assembled Observation is described in Figure 2, and a version with sample

2Or simply the distance d for non-cosmological sources.

– 18 –

implementations attached to the interfaces is shown in Figure 3.

Note the “Stack Marker” in the Observation, which is just a null PropagationEffect placed
in the sequence to mark an important location, such as the top of the atmosphere. This will be
helpful because the Calibration will always need to be defined relative to some reference plane.

6. Universe Domain

6.1. Cosmology

Describes the zeroth-order geometry of the Universe.

interface Cosmology {

// generic methods for changing cosmological parameters

void setParameters(ParameterVector p);

ParameterVector getParameters();

double dA(double z); //angular diameter distance

double dL(double z); //luminosity distance

double dVdz(double z); //volume element

double lookback(double z); //lookback time

double H(double z); //Hubble parameter vs z

Vector dDAdp(double z); //derivatives w.r.t. parameters

Vector dDLdp(double z); //derivatives w.r.t. parameters

// others for linear growth factor, etc.???

}

One implementation is of course our usual cosmology with parameters {Ωm,ΩX , w, wa, h}.

???Should the Cosmology also be responsible for inhomogeneities (lensing), so that the above
calls take a SphericalCoordinate as argument as well?

6.2. Astronomical Sources

Any source of photons in the Universe. It is presumed that each implementation is a Noun,
and the iName of sources serve as logical IDs and it is hence desirable to make them unique within
a given Run.

interface AstronomicalSource {

– 19 –

Astronomical

Source

Propagation

Effect

Propagation

Effect

Propagation

Effect

Propagation

Factory

Propagation

Effect

Propagation

Effect

Propagation

Factory

Propagation

Factory

Detector

Channel

..
.

..
.

Target

Angular

Diameter

Distance

Collecting

Area

(Telescope)

Focal

Length

Fig. 1.— The Target and Channel structures assembled by the Universe and Observatory, respectively,
are shown. Photons flow from the top down, originating in an AstronomicalSource and passing through
various PropagationEffects to a Detector. Some of the intervening effects are not fully determined until
the details of the observation are known; their places are held by PropagationFactory objects.

– 20 –

Astronomical

Source

Propagation

Effect

Propagation

Effect

Propagation

Factory

Stack Marker

Angular

Diameter

Distance

Propagation

Effect

Propagation

Effect

Propagation

Factory

Propagation

Factory

Detector

Collecting

Area

(Telescope)

Focal

Length

Propagation

Factory

Propagation

Factory

Propagation

Factory

Observation

Circumstances

Observation

(created by Mission)

Fig. 2.— The Observation object is assembled in the Mission domain by attaching a Target to a
Channel. The ObservationCircumstances are given to each PropagationFactory so that the correct
PropagationEffect may be put in the chain.

– 21 –

Type Ia SN,

age 5d z=1.2

Host Dust

(A_V=xx,

R_V=xx, z=1.2)

Gravitational

Lensing (shear,

mag=xx)

Zodiacal Light (at

ecliptic pole)

Top of

Atmosphere

Angular

Diameter

Distance

Telescope

Filter #5

Atmosphere

(airmass=1.2,

moon phase 3d,

etc.)

LBL CCD

Collecting

Area

(Telescope)

Focal

Length

Zodiacal Light

Atmosphere

Observation

Circumstances:

Altitude,

azimuth, ecliptic

lat/lon, date.

Observation

an example

Fig. 3.— Another view of a Observation, this time with names in each block showing the actual physical
effect being modelled in the implementations.

– 22 –

// generic methods for changing model parameters

void setParameters(ParameterVector p);

ParameterVector getParameters();

SpectralFunction luminosity(UT t); // rest-frame luminosity

SpectralFunction dLdp(UT t, int iParam); // luminosity deriv w.r.t. parameters

SphericalCoordinates position(UT t); //position before any distortion

double redshift(); // cosmological redshift (if cosmological, 0 otherwise)

double losV(UT t); // rest-frame line-of-sight velocity

CartesianCoordinates position(UT t); // distance and velocity for nearby

CartesianCoordinates velocity(UT t); // sources, like stars & planets.

// Some helpful hints:

bool isVariable(); //Does luminosity vary w/time

bool isMoving(); //Does (unlensed) position change with time

Shape itsShape(double lambda); //Shape (in proper units)

}

??? A note on Dates: I suggest a convention that the date input to the AstronomicalSource
(or indeed to any Universe class) be the date at which the light arrives at the Solar System barycen-
ter. The AstronomicalSource is then responsible for calculating the proper time at the source,
which it can do because it knows the redshift z. A complication is that gravitational lensing in-
troduces time delays; but only in very rare cases will we care about this, such as when simulating
multiply-imaged sources, and we can plan perhaps to worry about these cases individually.

6.2.1. Shapes

Note the introduction of another class that describes a map of surface brightness over 2d
angular or physical variables:

interface Shape {

complex kValue(double kx, double ky);

complex xValue(double x, double y);

// Some hints for usage of this Shape:

double maxK(); //largest significant k-vector

double stepK(); //suggested k-space resolution

bool isAxisymmetric();

– 23 –

// additional methods for "draw" onto an image, returning

// particular moments, etc.

}

Expected implementations of Shape include

class PointSource extends Noun implements Shape;

class GaussianEllipse extends Noun implements Shape;

class ExponentialEllipse extends Noun implements Shape;

class DeVaucouleursEllipse extends Noun implements Shape;

class Shapelet extends Noun implements Shape;

class TabulatedShape extends Noun implements Shape;

There will probably have to be a Verb that can convolve a Shape with a PSF to return another
Shape:

class ConvolveShape implements Verb {

Shape convolve(Shape source, PSF thePSF);

}

class DistortShape implements Verb {

Shape distort(Shape source, Distortion dist);

}

6.2.2. Supernova Classes

A base class for all supernova would be:

class Supernova extends Noun implements AstronomicalSource {

public:

UT dateOfExplosion();

bool isVariable() {return true;}

bool isMoving() {return false;}

Galaxy itsHost() {return hostGalaxy.target()};

Shape itsShape(double lambda) {return PointSource;}

private

Link hostGalaxy;

}

??? Note use of the SNAPSim Link class here to hold a pointer to the host Galaxy object.
The syntax used here for extracting the target of the link is a guess at what SNAPSim will provide.

– 24 –

For most of this document I have glossed over the distinction between Link and Composition

relationships.

Type Ia supernovae do not in general have any methods or data beyond those of this Supernova
class. But we may choose to implement, as in SNAPfast, models of TypeIa that predict some
intermediate observable quantities other than just the luminosity, e.g. light-curve parameters
such as stretch, rise time, etc. So there might be an additional class (or an abstract class with
several implementations) called

class SupernovaIa extends Supernova {

... // Implements all the methods of AstronomicalSource() and

... // Supernova()

ObservableVector observables(); //intermediate observables

ObservableVector dObsdp(int i); //and their derivs w.r.t. parameter i

}

6.2.3. Galaxies

Galaxies are AstronomicalSources with finite extent. The spectrum of a galaxy would likely
be specified by some set of star-formation and extinction parameters. Note that luminosity should
return the total luminosity of the entire galaxy, itsShape returns the distribution of that luminosity
across the sky at a chosen wavelength.

??? Note that a Galaxy will need to know the Cosmology somehow in order to calculate its
luminosity, because the stellar-evolution codes will need to know the age of the Universe at the
relevant redshift.

class Galaxy extends Noun implements AstronomicalSource {

public:

bool isVariable() {return false;}

bool isMoving() {return false;}

??? some kind of connection with a catalog entry

}

Ultimately there will be a

class AGN extends Noun implements AstronomicalSource {

public:

bool isVariable() {return true;}

bool isMoving() {return false;}

– 25 –

Galaxy host() {return itsHost.target();}

private

Link itsHost;

}

6.2.4. Stars

Assuming here that all stars are too close to have comsological redshifts, there is a base class
that looks like

class Star extends Noun implements AstronomicalSource {

public:

Shape itsShape(double lambda) {return PointSource;}

double redshift() {return 0.;}

private:

double distance;

??? proper motion specification

}

Some stars are variable, some aren’t. We’ll assume that isMoving() is true only if there is non-zero
proper motion; parallax does not count as “moving.”

6.2.5. The Phantom Source

A special-purpose source is one which emits no photons. It allows us to use the framework to
easily construct maps of the background light.

class PhantomSource extends Noun implements AstronomicalSource {

public:

Shape itsShape(double lambda) {return PointSource;}

double redshift() {return 1000.;}

bool isVariable() {return false;}

bool isMoving() {return false;}

SpectralFunction luminosity(UT t) {return ScalarSpectralFunction(0.);}

... etc.

}

– 26 –

6.3. Propagation Effects

Any medium that lies between the AstronomicalSource and the Detector may be derived
from

class PropagationEffect extends Noun {

public:

void setParameters(ParameterVector p);

ParameterVector getParameters();

SpectralFunction transmission(); //Transmission of bgrnd photons

SpectralFunction emission(); //surface brightness of added photons

Distortion distortion(); //distortion of bgrnd image

PSF blur(); //blurring of bgrnd image

// This one needed for modelling:

SpectralFunction dTdp(int i); //Deriv of transmission w.r.t. parameter

}

In general an intervening PropagationEffect can have four effects on our view of its background:
absorbing photons; adding photons; distorting the image; or blurring the image. Galactice dust, for
example, has important extinction but no significant visible emission, distortion, or blurring, so it
might be realized as a PropagationEffect that has null returns for emission(), distortion(),

and blur(). The atmosphere is probably significant in all four aspects (this will be in the Obser-
vatory domain, not Universe).

Each individual observation of an AstronomicalSource will be done through a series of
PropagationEffects, the effects of which can be compounded because of our ability to gener-
ate products of SpectralFunctions, Distortions, and PSFs.

The important PropagationEffects in the Universe domain will be:

class HostGalaxy extends Noun implements PropagationEffect;

class IntergalacticDust extends Noun implements PropagationEffect;

class GalacticDust extends Noun implements PropagationEffect;

class GravitationalLensing extends Noun implements PropagationEffect;

class ZodaicalLight extends Noun implements PropagationFactory;

class ZodaicalLineOfSight extends Noun implements PropagationEffect;

class TopOfAtmosphere extends Noun implements PropagationEffect;

– 27 –

Note that the Zodiacal light, has a PropagationFactory because the exact realization of PropagationEffect
is indeterminate until the circumstances of the observation are known (§5). All of these effects may
be considered to have null blur() in the visible/NIR. Non-null characteristics include:

HostGalaxy has transmission() as a Dust screen at the redshift of the host. The emission is
the surface brightness of the host galaxy.

IntergalacticDust has transmission() specified by some model of grey dust and the redshift
of the source.

GalacticDust has transmission() as a Dust screen at zero redshift.

GravitationalLensing has only distortion(), which is determined by the source redshift and
position.

ZodaicalLight has only emission(), which is determined by the solar coordinates of the obser-
vation.

TopOfAtmosphere This is just a placeholder entry. All of the methods return null, but it allows
us to mark the point in the stack of PropagationEffects which divides the Universe from
the Observatory. It is the job of the Calibration domain to simulate the spectral response of
elements past this marker.

Classes that will certainly be needed to implement the astronomical PropagationEffects are

// Clayton-Cardelli-Mathis model of extinction:

class CCMDust extends Noun implements SpectralFunction {

private:

double Av, Rv; // A_V and R_V of dust

double z; // Redshift of the dust screen

}

// Greg Aldering’s model for Zodiacal emission spectrum

class ZodiacalLight extends Noun implements SpectralFunction {

private:

double solarElongation;

double eclipticLatitude;

}

// A model for grey dust absorption

class GreyDust extends Noun implements SpectralFunction {

private:

double sourceZ; // redshift of source

– 28 –

double ??? // parameters of the dust distribution model

}

Here is the interface for a PropagationFactory:

interface PropagationFactory {

PropagationEffect realize(ObservationCircumstances oc);

bool ifAbsorbs();

bool ifEmits();

bool ifDistorts();

bool ifBlurs();

void appendTo(Target t);

void appendTo(Channel t);

void appendTo(NounArray t);

}

The boolean tests may be used to check if the observing circumstances will affect, for example, the
apparent position or incident flux of this source. The appendTo methods tell this factory to append
itself, or a realization of its PropagationEffect, to the list of intervening media maintained in a
given Target, Channel, or each element of a NounArray of these.

6.4. Targets

For each AstronomicalSource we need to know the PropagationEffects through which it
will be viewed. The Target structure contains both the source and the intervening media:

class Target extends Noun {

public:

AstronomicalSource source;

NounArray propList; //??? can we use a list?

double dA; //Angular diameter distance

void append(PropagationEffect pe);

void append(PropagationFactory pf);

void replace(??pointer to list member??, PropagationEffect pe);

bool isValid();

SphericalCoordinates astrometricPosition(ObservationCircumstances oc);

SpectralFunction incidentFlux(ObservingCircumstances oc);

// ??? a method to get observed Shape?

}

– 29 –

The isValid() method checks that propList contains only PropagationEffect and PropagationFactory

entries. The astrometricPosition method calculates the apparent position of the object rel-
ative to the stellar reference frame. There is a dependence upon the date of observation for
moving objects, and upon the position of the observer if the source is close enough to have
significant parallax. This method will throw an exception if there is a propList element that
has ifDistort()==true but cannot determine the distortion from the information present in the
ObservationCircumstances structure. The incidentFlux() method similarly gives the incident
flux (at top of atmosphere) from this source, which is just the product of the source luminosity and
all the transmission() functions, divided by the distance factor.

6.5. Distribution Functions

Distribution functions tell us how to populate the Universe with AstronomicalSources and
what PropagationEffects their photons will encounter before entering the Observatory. We first
have an interface for generating a list of sources that might be seen over a given time period in
a given part of the sky. ??? I think the distribution functions want to be Verbs, so that the
run() method generates the desired target list. I’m not sure in Java if you can have a heirarchy of
interfaces or if I need to make this an abstract base class.

class TargetGenerator extends Noun implements Verb {

public:

NounArray generate(Cosmology c,

SolidAngle a,

UT startTime, UT endTime,

UniformDeviate u);

}

The UniformDeviate object is a random number generator that is passed in. We assume a model
in which the entire simulation run shares a single instance of the random number generator.

There can be various implementations of TargetGenerator, which make SNe, galaxies, stars,
or perhaps jointly generate the galaxies and SNe so that the host relationships are physically based.
Some implementations would have additional parameters, such as the min/max redshift of interest,
or the faintest magnitude of galaxy to generate. A given realization of the Universe can have
one or more implementations of TargetGenerator instantiated—more than one is appropriate if
there are multiple populations of objects on the sky. There should be a master list of all active
TargetGenerators:

class MasterGenerator extends Noun implements Verb {

public:

– 30 –

NounArray sourceGenList;

NounArray propagationFactoryList;

NounArray generate(Cosmology c,

SolidAngle a,

UT startTime, UT endTime,

UniformDeviate u);

}

The generate() method of this class just calls generate() for all of the TargetGenerators in the
sourceGenList.

It is also necessary to realize the PropagationEffects, for example create a lensing or extinc-
tion map on the sky. The previously defined class PropagationFactory is appropriately reused
here. It is the job of a PropagationFactory to add a new PropagationEffect to the propList of
the Targets it affects. The PropagationFactory may instead add itself to the propList if there
is a need for later information about ObservationCircumstances. For example there is

class SchlegelDustMap extends Noun implements PropagationFactory {

public:

PropagationEffect generate(SphericalCoordinate s);

}

which can produce a CCMDust extinction law for the chosen coordinates based on the Schlegel/Finkbeiner/Davis
map, and package it into a PropagationEffect. The appendTo() methods of this particular fac-
tory would ask the Target for its astrometricCoordinates in order to determine the line-of-sight
extinction. This determination is independent of ObservationCircumstances (as long as our ob-
servatory stays inside the solar system!).3

6.6. The Universe Procedure

The end product of the Universe is a NounArray of Targets (should we make a TargetList

class???). To produce this, the steps are:

1. Create the parent Cosmology for the simulation.

2. Create a SourceGenerator for each set of objects to inhabit the Universe.

3. Create a MasterGenerator and add each SourceGenerator to its sourceGenList.

3A detail: the Galactic extinction depends upon distance for objects within the Galaxy.

– 31 –

4. Create a PropagationFactory for each intervening medium (excluding those, such as host
galaxies, that will be generated by the SourceGenerator). Add each to the propagationFactoryList
of the MasterGenerator. Note that the order will matter here.

5. Determine the bounds of the survey (from Mission domain).

6. Call the generate() method of the MasterGenerator with the desired survey bounds (this
is also its run() behavior). It will first generate Target lists from each SourceGenerator

and combine them all into one list. Then it asks each PropagationFactory to appendTo()

every Target.

The Target list is now complete. Optionally the list can be assembled by client calls directly to
the generator classes, bypassing the MasterGenerator.

7. Observatory Domain

7.1. Overall Scheme

The Observatory domain specifies everything from the top of the atmosphere or observatory
input to the detector outputs. All of the instrumentation and environmental effects ahead of
the detector itself will be described as PropagationEffects, culminating in a Detector class
that describes the conversion from photons into electrons on a two-dimensional grid. One of the
PropagationEffects is the Telescope that has an extra bit of information: the collecting area. A
Channel is list of PropagationEffects, one of which is the Telescope, and a Detector, completely
describing the path of one set of photons. The only additional bit of information needed for a
Channel is the focal length, which gives the plate scale for conversion of physical detector pixel size
into an angular scale.

A given observatory comes equipped with a multiplicity of possible Channels. A Configuration

of the observatory is a list of Channels that operate simultaneously. Each Detector knows its po-
sition in the focal plane (in meters) relative to the optic axis. A Configuration for SNAP would
of course contain one Channel for each of the imaging arrays, which do not overlap in the focal
plane. A convenient way to represent the image-slicing spectrograph is as an array of Channels
that all occupy the same physical location on the focal plane, but each have slightly different
SpectralFunctions.

The Mission domain will contain a class Exposure which will specify a single exposure taken
with the observatory in a chosen Configuration. The Exposure also will specify the start/stop
time of the exposure and the Orientation of the observatory during the exposure. An Exposure

should therefore contain or link to everything that there is to know about the functioning of the
observatory for a given period of time.

– 32 –

??? Need a way to specify the jitter contribution to the PSF. Perhaps as a propagation effect?
Or somewhere in the Exposure?

7.2. Telescope and Optics

The Telescope is derived from a PropagationEffect because it can have a PSF, transmission
function, distortion, and perhaps even some thermal emission. But it also has a collecting area:

class Telescope extends PropagationEffect {

public:

double collectingArea();

??? need a diameter() method?

}

The zodiacal light, atmosphere, filters and other optical elements can be implementations of
PropagationEffect, each created by an appropriate PropagationFactory. In particular we will
expect to have the two classes:

class Atmosphere extends Noun implements PropagationFactory {

public:

AtmosphereLineOfSight realize(double zenithAngle, UT date)

??? also will depend on observatory altitude and position?

}

class AtmosphereLineOfSight extends PropagationEffect {

public:

double airmass;

UT date;

double moonPhase;

double moonAngle;

double r0; //Atmospheric turbulence scale length

????

}

which will tell us the properties of the atmosphere in a given direction at a given time.

7.3. Detector

The Detector is also derived from PropagationEffect as it has a SpectralFunction QE and
a PSF that describes the pixel response function [??? This PSF needs to be converted from distance
units to angular units using a focal length.]. The Detector has a few additional attributes:

– 33 –

class Detector extends PropagationEffect {

public:

double pixelSize; //pixel size, in meters

int xSize; //size of array, x dimension

int ySize; //size of array, y dimension

double xPosition; //Position of detector center in focal plane (m)

double yPosition;

NoiseModel noise();

It is assumed that the detector is physically rectangular, and is centered at the given position
relative to the optical axis of the telescope.

A NoiseModel describes the variance of the output of a given pixel’s detection process. The
interface is

interface NoiseModel {

double variance(double countRate,

double exposureTime);

double realize(double countRate,

double exposureTime);

}

A common implementation is

class CCDNoise extends Noun implements NoiseModel {

public:

double readNoise;

double darkRate;

double variance(double countRate,

double exposureTime) {

return readNoise*readNoise + exposureTime*(countRate+darkRate);

}

double realize...;

}

??? Missing from the domain is any way to describe the dead times for readout and moving
the telescope.

7.4. Aggregate Classes

A complete chain of the Observatory is a Channel:

– 34 –

class Channel extends Noun {

public:

NounArray propList;

Detector itsDetector;

double focalLength;

double collectingArea(); //find this from the Telescope entry

bool isValid();

SpectralFunction efficiency(ObservingCircumstances oc);

SolidAngle fieldOfView(ObservingCircumstances oc);

bool isVisible(SphericalCoordinates c, ObservingCircumstances oc);

}

The isValid() method returns true if all the elements of the propList are either PropagationEffects
or PropagationFactorys, and if exactly one of them is a Telescope. The efficiency() function
gives the end-to-end QE vs wavelength, i.e. the product of all the transmission() functions of its
elements.

The fieldOfView() function returns a rough outline of the region of sky subtended by the
detector under the given observation circumstances. The returned region should contain the entire
observed area, but is allowed to be a slightly larger region if this allows the test to be faster (for
example by using the circumscribed rectangular area). The isVisible() function is a more exact
(and possibly slower) test of whether a given sky coordinate falls onto the detector. For both of
these methods we are essentially propagating the (rectangular) outline of the Detector backwards
through all the distortions of the optics to find its outline on the sky.

An available set of simultaneously active Channels is a

class Configuration extends Noun {

public:

NounArray channelList;

bool isValid();

}

The Boolean just checks that each element on the list is a link to a Channel.

??? All the Channels of a Configuration are assumed below to share a common set of
exposure times. This would not describe well the situation where we are simultaneously running
the spectrograph and the imager, but with different exposure times. Nothing in the framework
here precludes, however, the possibility of having more than one Configuration in use at a given
time (indeed this might happen with multiple ground-based telescopes for instance). For now we

– 35 –

leave it up to the individual programmer to insure that an observatory is not specified to be used
in an impossible fashion, e.g. two different pointings for SNAP at the same moment.

8. Mission Domain

Data structures in this domain specify the schedule of observations to be made, the dither/repetition
patterns of the exposures, and the Observation structure that combines the source information
from Universe domain with the Observatory information for all the detectors that see the source.

The principle Verbs of this domain are an algorithm for determining an exposure schedule—
which is likely to be customized for every possible scheduling algorithm—plus a process for creating
the Observation list, which is likely to be used in the same way for nearly all simulations.

8.1. Data Structures

The following Nouns (and manipulation functions) are needed:

class ExposureSequence extends Noun {

public:

UT startTime;

double exposureTime; //Per exposure

int xDitherCount;

int yDitherCount;

double xDitherStep; //in radians

double yDitherStep;

??? allow a list of Orientations as alternative to grid dither?

int nRepeat; //number of exposures at each dither posn

Link itsConfiguration; //link to an observatory Configuration

Orientation pointing;

??? something about dead times - array of exposure start times??

}

class ObservationCircumstances extends Noun {

public:

UT startTime; //barycentric time

UT endTime;

SphericalCoordinatesICRS lineOfSight;

CartesianCoordinatesICRS observatoryPosition;

CartesianCoordinatesICRS observatoryVelocity; //for stellar aberration

– 36 –

CartesianCoordinatesICRS sunPosition;

CartesianCoordinatesICRS moonPosition;

CartesianCoordinatesICRS earthPosition; //the geocenter

double horizonElevation; //where is horizon/limb of Earth

??? is this all that’s needed to specify any PropagationEffect?

}

// Some functions that return commonly desired quantities:

// (???could be methods of the Noun)

double sunAltitude(ObservationCircumstances oc);

double moonPhase(ObservationCircumstances oc);

double zenithAngle(ObservationCircumstances oc);

double airmass(ObservationCircumstances oc);

double azimuth(ObservationCircumstances oc);

double solarElongation(ObservationCircumstances oc);

double eclipticLatitude(ObservationCircumstances oc);

bool isVisible(ObservationCircumstances oc); // does Earth obstruct source?

class Observation extends Noun {

public:

AstronomicalSource source;

NounArray propList; //??? can we use a list?

Detector detector;

double dA; //Angular diameter distance

double collectingArea(); //get this from the Telescope

double focalLength;

void replace(??pointer to list member??, PropagationEffect pe);

bool isValid();

SphericalCoordinates astrometricPosition();

double xPixelPosition, yPixelPosition;

double sourceRate(); //source count rate (per s)

double skyRate(); //background count rate (per pixel per s)

PSF thePSF(); //cumulative ePSF for source (in angular units)

Link itsTarget;

Link itsChannel;

Link itsExposureSequence;

double dRate_dParam(??index of effect??, int i);

– 37 –

}

The last method here is for the purposes of adjusting model Observations to the data. It gives
the derivative of the output count rate with respect to parameter i of a chosen element in the
source/propagation/detector chain.

??? Where does cosmic-ray information come from?

8.2. Verbs

The first function of Mission domain is to determine the schedule for the observations. This is
accomplished by a

interface MissionAlgorithm {

NounArray schedule(NounArray targetList,

NounArray configurationList);

}

This method (which is also the run() for this Verb) takes as input the list of Targets in the
Universe, along with the available Configurations of the Observatory. The output is the set of
ExposureSequences to be taken during the mission.

The implementations of this interface can become quite complex if they are modelling any kind
of adaptive targeting algorithm, because it might involve calling other Mission-, SourceData-, and
Analysis-domain processes to mimic the collection and processing of data that would be done in
deciding how to trigger spectroscopy. Note that an implementation that is doing such an algorithm
test would likely ignore the input targetList because it contains truth inputs that are unavailable
for the real data.

A simpler implementation, such as needed for SNAPfast, simply has an open-loop scheduling
algorithm, that can assume we know which Ia’s are interesting and points the telescope at them
without worrying about the trigger mechanism.

A Verb (??? or just function?) that will be usefully used by implementations of MissionAlgorithm
is one which generates the Orientation of the Observatory that is necessary to put a chosen Target

at a chosen location on a chosen Channel’s detector:

class PointAtTarget implements Verb {

Orientation pointAt(Target t,

Channel c,

double xPixel, double yPixel,

double positionAngle,

– 38 –

UT time);

}

There should be either a Boolean flag or a thrown exception to indicate when the target is not
observable at the chosen time.

The second major method of Mission is to take the list of Targets and the list of ExposureSequences,
and determine which of the former are observed by each Channel of the Observatory during each
of the latter.

class Observe implements Verb {

public:

NounArray run(NounArray targetList,

NounArray exposureList);

}

The return is an array of Observations, one for each time each Target is seen by a Detector

during an ExposureSequence. This completes the task of the Mission domain.

9. PixelData Domain

PixelData domain contains everything that deals with pixelized image data. The simulation
effort will not be concerned for some time with the details of bias subtraction and flat-fielding, so
we will simply be operating with calibrated images. The simulation architecture will provide us
with an Image class, so there are few or no additional data structures required in this domain.

There are two classes of Verbs that must be produced for this domain. The first is

class Render implements Verb {

public:

Image run(NounArray observationList,

UniformDeviate random,

ExposureSequence whichExposure,

int whichXDither,

int whichYDither,

int whichRepeat,

CosmicRayModel cr);

}

There is some calling syntax (??? not really decided here) that tells this Verb which individual
exposure of which ExposureSequence is to be simulated. We assume that each Channel generates

– 39 –

an individual image as each contains a single Detector. The random input is needed to realize the
noise on the image. The steps for this Verb are

1. Create an appropriately sized empty Image.

2. Find which Observations in the input list refer to the desired exposure.

3. Use the Shape, Distortion, and PSF information contained in the Observation to determine
how to draw the (noiseless) object onto the detector pixel grid.

4. Use the countRate() and exposureTime information in the Observation to normalize the
total received flux from the source, and sum this source into the pixelized image.

5. Use the NoiseModel of the Detector to realize measured pixel values for this image. ???The
sky rate will have to be known for all pixels but right now it is carried in individual Observations—
need some way to extract a image-wide sky level, perhaps using one or more PhantomSources.

6. Use the CosmicRayModel to add cosmic-ray hits to the image.

??? There might be some Combine Verb to produce a combined image from a dithered set
of exposures of the same field. Alternatively the Render Verb might be instructed to construct a
single combined image for an entire ExposureSequence rather than bothering with the individual
frames.

The second major class of Verbs in this domain will be those that examine an Image or series
of Images to produce SourceData lists of all the objects detected. For instance one might be
a SExtractor kind of process. There will likely be many such things developed once we start
simulating image algorithms. ??? I postpone for now any attempt to enumerate them all, since we
will initially skipping the PixelData entirely.

10. SourceData Domain

SourceData contains the integrated quantities of observed targets that will be extracted from
single (or dithered sets of) images. The canonical example is the instrumental flux of a point source
that is extracted from an image by some photometry algorithm.

For a point source there are only three observables (flux and two position components) on a
single image. The following class saves these quantities, as well as the covariance matrix for them.
The fluxVariance method provides the flux variance after marginalization over the position.

class PointSourceData inherits Noun {

Link itsChannel;

Link itsExposure;

– 40 –

double flux();

double fluxVariance()

SphericalCoordinates position();

ObservableVector observables();

CovarianceMatrix covariance();

}

The flux is the count rate on the detector. It requires some Calibration-domain classes to be
converted an estimate of the flux in physical units. ???Perhaps each Channel can include a nominal
conversion factor from count rate to flux, so that we can express the flux() here is appropriate
units.

Likewise the measured position may require some massaging by Calibration classes in order to
yield the true best estimate.

An assumption made here is that there is no covariance between quantities in different Source-
Data instances. Covariances between source fluxes are usually generated only via calibration pa-
rameters, so these uncalibrated data should be independent. An exception is for objects that share
pixels (and hence variance) on an image, for instance a SN its host, or crowded objects. In the
future it may be necessary to have catalogs that include more generally coupled observables us-
ing the classes described below. For now we will assume that our SourceData catalogs consist of
decoupled observables.

For resolved galaxies, there is additional Shape information in the SourceData. The observables
and covariance methods now include some set of shape parameters. There are size and ellipticity

calls, that will be characteristics of any implementation of Shape. ??? Where is the measured shape
combined with PSF estimation to give an intrinsic-shape estimate? If determination of the PSF map
is part of going from PixelData to SourceData, then there might be covariance among SourceData
due to uncertainties in this.

class ResolvedSourceData inherits Noun {

Link itsChannel;

Link itsExposure;

double flux();

double fluxVariance()

SphericalCoordinates position();

Shape intrinsicShape();

ObservableVector observables();

CovarianceMatrix covariance();

double size();

void ellipticity(double& e1, double& e2);

– 41 –

}

There must be some Verb that calls the ETC to generate a FluxPoint for each Observation of
each point-source object. For extended objects, the ETC must also measure shape parameters, etc.

??? How will we handle combining info from different exposures? Could propagate the covari-
ance matrix for each individual exposure, and later collect all exposures and fit for single best-fit
position/flux/shape.

10.1. Truth and realization

10.2. Catalogs

10.3. ETC

11. Calibration Domain

The task of the calibration is to create a model for the response of the instrument. Typically
the “instrument” is taken to be everything from the top of the atmosphere down (or from the
entrance aperture of a space telescope). In essence the Calibration domain thus contains, for each
Channel of the detector, a little model of how the positional and flux outputs of that Channel

are related to the position and flux of the celestial object—in other words, a Distortion plus a
SpectralFunction that describes the absolutely-calibrated effective collecting area of the Channel.

11.1. Model Channels

11.2. Standard Bands

11.2.1. Correlated data sets

11.3. For discussion with Calibration group

[NOTE: The following expository material is for discussion purposes, probably won’t go into
the actual specification document.]

The simulation code in the Observatory domain contains information that fully describes the
instrument response. But this truth information should not be available to the Analysis domain
because when analyzing the real data, we will not have perfect a priori knowledge of the instrument
response. We will have to create a model, using the data itself, information from ground tests, and
calibration observations with the telescope. So the Calibration model of the instrument, unlike the

– 42 –

Observatory specifications, have free parameters that have to be adjusted to give the best estimate
(and uncertainties) that agrees with all calibration information.

Flux calibrations can be used two different ways. One is to have a model for the instrument’s
spectral response. A posited input flux spectrum (i.e. at the top of the atmosphere) can be
convolved with the response model to predict the flux in the SourceData, which are our instrumental
outputs. Most rigorously we then view the analysis as a process of adjusting the free parameters in
the source models and in the calibration models until we obtain best agreement with the collection
of SourceData from all the science and calibration observations. Let’s call this Method A.

Typical astronomical calibrations often try to do something different, let’s call it Method B:
they posit a set of standard bandpasses and try to come up with a conversion from the instrumental
outputs into fluxes through the posited standard bandpasses. The typical photometric calibration
equation takes intrumental magnitudes in one or more bands (plus perhaps engineering data such
as airmass), maybe some prior info on the spectrum/color of the target, and outputs an estimate
of fluxes in standard bands/colors.

Method A is preferred for analysis of the experiment’s data. Ultimately we want a model of
the whole system (Universe plus instrument) that best reproduces the data. Whenever we have a
model for the spectra of the sources (e.g. SN Ia’s, galaxies of different type/redshift) we want to
be able to analyze things this way.

Method B is preferred when we need to compare the data to external systems, or when we
want to place all the data on the same system even though the instrument properties vary (e.g.
for different airmasses, two slightly different QE curves or filters in same nominal band, etc.). It
also has the advantage that the Analysis domain classes can just fit their source models to the
standard-mag outputs, and don’t ever have to examine the instrumental fluxes directly.

Figures 4 show the inputs and outputs of the calibration process in both Methods. In Method
A, the calibration parameters (which specify the model passbands) are combined with a posited
source spectrum to give a model instrumental output for each Channel. In Method B, the in-
strumental fluxes are input, along with the calibration parameters, and the output are estimated
standard-band fluxes. Input includes uncertainties on the instrumental fluxes, which are propagated
to a covariance matrix for the output fluxes.

I am reasonably sure that we will need to implement Method A. But astronomical calibration
people are not accustomed to having to estimate passband functions, they usually just deal with
moments of the passbands (like color terms, which are essentially 1st moments of the passband).
There must be some way to bridge the gap between these two views of calibration, and come up
with a uniform interface that can suit both. But I have not thought of it yet.

In any case we will need these kinds of classes:

class ParameterVector extends Noun; //The parameters of the Calibration model

– 43 –

Table 1. SpectralUnits Definitions

Quantity Units

Luminosity γ (lnλ)−1 s−1

Flux γ (lnλ)−1 m−2 s−1

Area m2

SolidAngle sr
SurfaceBrightness γ (lnλ)−1 m−2 s−1 sr−1

TransferFunction (scalar)
Rate s−1

λ µm

Band 1 Flux

Band 2 Flux

Band N Flux

..
.

Calibration
Calibration

Parameters

(=bandpass

models)

Derivatives

of fluxes

w.r.t.

parameters

Source

spectrum

 Method A Scheme Band 1 Flux

&

Uncertainty

Band 2 Flux

&

Uncertainty

Band N Flux

&

Uncertainty

..
.

Calibration

Standard

bandpasses;

fluxes and

covariance

matrix

Calibration

Parameters

Derivatives

of fluxes

w.r.t.

parameters

Source

spectrum info??

 Method B Scheme

Fig. 4.— Two possible views of a Calibration process.

– 44 –

class ParameterCovariance extends Noun; //Uncertainties on the Calibration model

class CalibrationModel; // ???? The A or B method black box itself

There are also classes that the calibrators themselves will use to refine the calibration model, using
observations of standards, multiple observations of the same targets, etc.

The ParameterVector, ParameterCovariance classes will likely be defined in the Utility
domain.

12. Analysis Domain

LightCurve

LightCurveFit

LightCurveObservables

Spectrum

SupernovaSpectrumFit

SupernovaSpectrumObservables

SupernovaFit //constrain SN mag with LC & spectrum

HubbleDiagram

HubbleDiagramFit

